全链路追踪 OpenTelemetry 零侵扰可观测性 eBPF Prometheus 全链路监控

当前位置:首页> 网络性能监控>在线监控运维故障根因分析 传统企业IT运维管理中主要存在哪些问题

在线监控运维故障根因分析 传统企业IT运维管理中主要存在哪些问题

时间:2024-10-04 04:16:56

一、线监析传IT运维自动化的控运前景如何

2020年IT运维市场前景分析

2019年10月29日,第一财经刊发了关于《工信部:加强5G、维故维管问题人工智能、障根主存工业互联网、因分业IT运物联网等新型基础设施建设》一文,统企其中指出,理中推动新型IT基础设施建设。线监析传加强5G、控运人工智能、维故维管问题工业互联网、障根主存物联网等新型IT基础设施建设,因分业IT运扩大高速率、统企大容量、理中低延时网络覆盖范围,线监析传鼓励企业通过内网改造升级实现人、机、物互联,为企业提供有力的信息网络支撑,让企业IT基础设施成为企业发展之路上的护航者。由此可以看出,国家对企业IT基础设施建设的重视之深,而我们IT运维人员将是这次IT基础设施建设的主力军。

IT运维是企业项目开发后保证业务系统正常运行的必备工作之一,如何满足企业对在线业务系统高可靠、低延时、大容量、零故障等要求或在终端用户无感知情况下处理运维过程中存在的各种各样的突发性问题,是IT运维人员必会的技能,但是如此优秀的IT运维人员几乎一将难求。

既然,IT运维人员对于国家相关部门大力支持的IT基础设施建议那么重要,那么我们IT运维人员都需要拥有哪些能力或IT运维工作内容有哪些呢?

1、IT基础设施运维自动化

由于企业要求IT基础设施能够做到高可靠、低延时、大容量、零故障等,那就需要IT运维人员对底层硬件设备进行用心维护,硬件不出故障才能保证上层业务系统的稳定、高效地运行。

2、IT基础设施之上在线业务系统上线

企业在线业务系统是企业对内或对外提供服务的重要途径,IT运维人员在业务系统开发后,能够准确及时上线业务系统是对其业务能力的重要考核标准之一。

3、IT基础设施及在线业务系统监控自动化

对企业IT基础设施及在线业务系统进行有效监控,能够IT运维人员及时获知硬件或业务系统状态,以此判断硬件或业务系统有效服务能力,对硬件或业务系统故障做到即时反馈,即时处理,不影响企业对内或对外提供服务。

4、IT基础设施及在线业务系统日志处理自动化

对企业IT基础设施及IT在线业务系统进行日志处理(收集、分析、监控、趋势图展示等),获知硬件使用或业务系统中用户行为,以此预测下一周期内硬件或业务系统资源可用情况,及时应对用户访问波峰。

5、在线业务系统发布自动化

使用业界先进工具实现在线业务系统代码发布自动化,打破传统IT运维"领域隔离",实现真正的一键式发布业务系统,加快系统部署速度,实现用户无感知升级或回滚操作等。

6、IT基础设施平台升级

传统的企业IT基础设施平台对企业在线业务系统需要底层硬件平台的高响应、高可靠、大容量等能力反应不及时或不彻底的情况时有发生,这就需要我们IT运维人员能够对传统的企业IT基础设施平台进行升级,把传统的企业IT基础设施平台升级为云平台,由云平台的高响应、高速度、低延时、大容量等能力为业务系统稳定运维保驾护航。

7、在线业务系统迁移至云平台

传统的企业IT基础设施平台升级为云平台后,需要IT运维人员能够把运行在传统的企业IT基础设施平台之上的业务系统迁移至云平台。

8、云平台运行维护(升级)

云平台运行过程中,需要IT运维人才时刻进行监控、对于云平台突发情况进行处理。

9、IT运维自动化系统开发

由于企业IT基础设施运维过程中,涉及多业务、多场景、多平台等,IT运维人员在运维过程中亟需一套本企业的IT运维管理系统,但是由于每家企业的IT基础设施异样性,导致市场上无法采购标准化系统进行应用,大多数情况下由本企业IT运维人员根据企业自身情况进行开发。

10、业务系统海量数据分析及展示

企业在运营过程中产生大量的业务类数据,并且此类数据对于生产、运营等有利于决策,因此IT运维人员需要对企业内部或行业内的数据进行收集、分析、展示等,最终为企业运营提供决策参考依据。

以上为我们为罗列的IT运维人员能力要求或工作内容,下面我们再来了解一下2020年IT运维市场规模,2020年有越来越多的企业开始拥抱互联网,借助互联网开展“无接触”式业务,特别是在2020年初“新冠”疫情的影响下,公司为了生存开启了全员在线办公及业务全天侯在线处理等,这也就为企业打开了企业在线常态化;让更多的工作借助互联网完成,据权威机构公布称:"这一切将产生约100万相关技术开发岗位及约10万IT运维岗位,至2024年,IT运维行业市场容量将呈现出逐年增长态势,到2024年IT运维管理行业市场规模将达到3832.8亿元。"

2020年IT运维行业技术展望

企业对于IT运维人员要求越来越“T型”化,其中包含更深层次的专业化,自动化以及智能化,因此在2020年全球大多数的企业都在以行业标杆(例如:谷歌、亚马逊、阿里等)为榜样,着力发展企业自身的如下方向:

1、云计算

云服务器是由云服务厂商提供的性能卓越、稳定可靠、弹性扩展的IaaS(Infrastructure as a Service)级别云计算服务。云服务器免去了采购IT硬件的前期准备,让企业像使用水、电、天然气等公共资源一样便捷、高效地使用服务器,实现计算资源的即开即用和弹性伸缩。

2、DevOps

DevOps使企业项目开发者与企业项目开发后IT运维人员、测试人员、产品经理、客户等直接发生了连接关系,让项目各方能够进行更好地结合,把以住只关注自身业务转移到整个交付过程,甚至关注到最终服务上,DevOps已经成熟,其在2020年将成为每一位IT运维人员必备技能之一。

3、AIOps

IT运维内容没有变,但是IT运维方式在发生改变,AIOps将为我们IT运维人员“解放”双手,让我们可以花费更少的时间在IT基础设施及IT业务系统监控、日志、安全等工作上,把业务重心投放到企业IT基础设施及IT业务系统发展、运营、服务决策上。

4、SaaS

SaaS(Software-as-a-Service)是企业提供应用、开发、IT运维等全套服务的一种形式,由于其不再需要用户有任何IT基础设施的投入,可以大大降低企业IT成本,获得更优质的服务。

5、边缘计算

随着5G技术大面积应用,更多的边缘设备需要对接到云平台,并享受近十年云计算行业发展的红利,但是如果生硬地把物联网设备与云计算平台对接,将会为云计算平台带来非常大的数据量的同时,也会影响到物联网边缘设备的数据处理能力,因此我们可以考虑把云计算技术向边缘设备进行延伸,这就是我们所说的边缘计算,IT运维人员将主导边缘计算的成云能力。

6、Serverless

ServerLess,为一种无服务模式,目的让企业不再关注IT基础设施,由IT运维人员提供IT基础设施后,多企业可以共享同一IT基础设施平台,企业可以摊销更多IT基础设施成本。

2020年黑马程序员IT运维工程师学习路线图

1、Linux操作系统基本功

Linux系统安装、配置,基本命令,VIM编辑器,Linux自有服务,权限管理,YUM包管理,开源项目上线部署。

2、Linux系统服务

网络基础(重点难点TCP/UDP)、sshd服务(scp/rsync)、文件共享服务(ftp/nfs/samba)、DNS域名服务、LAMP编译安装、rsyslog、Linux分区+LVM逻辑卷+(软硬RAID)

3、Shell、MySQL

Shell脚本编程、MySQL从入门到精通(DBA方向)

4、商城系统上线部署

Nginx概述、LNMP环境搭建、MySQL读写分离、LB负载均衡(Nginx/LVS/HAProxy)、NoSQL(Memcached、Redis、MongoDB)、存储、企业级商城系统架构实战。

5、配置自动化

配置自动化(Ansible/SaltStack)、监控(Zabbix/Promethus)、日志分析(ELK、KafKa)、CI/CD(Git、GitLab、Jenkins)

6、运维安全与调优

运维安全(防火墙、CA认证、VPN)

应用软件调优(Web应用调优)

系统调优(系统+内核)

7、运维云计算

Hadoop、KVM虚拟化、公有云运维(阿里云)、私有云运维(OpenStack)、Docker容器、Kubernetes(K8S)容器编排工具

8、Python运维开发方向

Python运维基础、Python面向对象、Django框架、Python CMDB项目开发

附件为2020版黑马程序员Linux云计算+运维开发学习路线图:

二、AIOps对比传统运维工具的优势

当前,随着企业数字业务的快速发展和业务量的攀升,企业信息系统架构的升级变迁,以及企业多套业务系统的在线运营,各类监控组件和应用系统间的关系错综复杂,系统运维的难度也急剧增加,且面临着巨大挑战。

在传统运维方式下,数据规模大且离散,数据治理和全面分析能力薄弱且依赖于经验和规则,运维十分被动,解决问题效率非常低下,运维的实用性大打折扣,难以满足当前主动运营的要求。

具体来说有以下几点:

发现问题难:企业在经年累月中布局了诸多监控工具,但是监控手段阈值的设定单一,且一般都是静态阈值,而指标和告警的异常却是多样化的,这样就会造成大量的误报漏报现象。此外,目前绝大多数的监控工具,缺乏趋势预测能力,使得运维局面非常被动,导致发现问题十分困难。

根因定位难:发现问题时一般都是对问题进行定性分析,可能了解到某一告警对应的指标波动是值得关注的,但是并不能因此确定造成这种现象具体根因。而且目前的监控工具,大多缺乏综合根因定界及定位分析的手段,即便对监控进行了集中管理,也难以通过单纯的几种指标进行根因定位。

数据治理难:当数字化建设进行到一定程度的时候,被管理对象的数据量相应的也是水涨船高,数据数量大、类别多且非常分散,很难通过某一指标体系来衡量系统的健康度,也没有一个统一的视角去判断数据质量的好坏优劣。

运营分析难:现有的大多数基础监控工具,多数都是从自己的管理阈例如系统管理、网络管理出发看待问题,缺乏端到端的分析能力,没办法以业务视角从综合运营分析的角度,去看待多样化指标对系统的影响。

而智能运维是一种全新的数字化运维能力,也将是数字化转型的必备能力。智能运维相对于传统运维模式而言,能够在运维数据治理、业务数字化风险、运维人力成本和业务侧影响力四个方面有本质的效能提升。

智能运维相对于传统运维模式而言,能够在四个方面有本质的效能提升:

运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础;

业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;

运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;

业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;

智能运维发展正如火如荼,Gartner预见其为下一代运维,认为到2022年将有近50%的企业用户部署智能运维。虽然目前不少企业已经在积极投入建设,也还有一些企业处在迷茫阶段,对这种趋势不太清晰,借用著名作家威廉吉布森的话,“未来已来,只是分布不均。”

三、传统企业IT运维管理中主要存在哪些问题

当前,随着企业数字业务的快速发展和业务量的攀升,企业信息系统架构的升级变迁,以及企业多套业务系统的在线运营,各类监控组件和应用系统间的关系错综复杂,系统运维的难度也急剧增加,且面临着巨大挑战。

在传统运维方式下,数据规模大且离散,数据治理和全面分析能力薄弱且依赖于经验和规则,运维十分被动,解决问题效率非常低下,运维的实用性大打折扣,难以满足当前主动运营的要求。

具体来说有以下几点:

发现问题难:企业在经年累月中布局了诸多监控工具,但是监控手段阈值的设定单一,且一般都是静态阈值,而指标和告警的异常却是多样化的,这样就会造成大量的误报漏报现象。此外,目前绝大多数的监控工具,缺乏趋势预测能力,使得运维局面非常被动,导致发现问题十分困难。

根因定位难:发现问题时一般都是对问题进行定性分析,可能了解到某一告警对应的指标波动是值得关注的,但是并不能因此确定造成这种现象具体根因。而且目前的监控工具,大多缺乏综合根因定界及定位分析的手段,即便对监控进行了集中管理,也难以通过单纯的几种指标进行根因定位。

数据治理难:当数字化建设进行到一定程度的时候,被管理对象的数据量相应的也是水涨船高,数据数量大、类别多且非常分散,很难通过某一指标体系来衡量系统的健康度,也没有一个统一的视角去判断数据质量的好坏优劣。

运营分析难:现有的大多数基础监控工具,多数都是从自己的管理阈例如系统管理、网络管理出发看待问题,缺乏端到端的分析能力,没办法以业务视角从综合运营分析的角度,去看待多样化指标对系统的影响。

而智能运维是一种全新的数字化运维能力,也将是数字化转型的必备能力。智能运维相对于传统运维模式而言,能够在运维数据治理、业务数字化风险、运维人力成本和业务侧影响力四个方面有本质的效能提升。

智能运维相对于传统运维模式而言,能够在四个方面有本质的效能提升:

运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础;

业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;

运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;

业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;

智能运维发展正如火如荼,Gartner预见其为下一代运维,认为到2022年将有近50%的企业用户部署智能运维。虽然目前不少企业已经在积极投入建设,也还有一些企业处在迷茫阶段,对这种趋势不太清晰,借用著名作家威廉吉布森的话,“未来已来,只是分布不均。”

参考资料:业务性能指标

全景性能监控
可视化复杂网络 知识 神经网络输出结果可视 istio集成pro 社交网络平台数据可视 应用性能管理在哪找工 网络可视化属于什么行 微服务如何设计监控 网络空间地理可视化 知网可视化网络图 如何找到根因分析的方
云监控
安全事故根因分析报告 对根因分析培训的建议 分布式数据库实时追踪 网络消费状况数据可视 关于promethe 卷积网络 可视化 卷 apm应用性能管理服 prometheus 数据的全链路监控 无 社交网络可视化实验研
OpenTelemetry
网络拓扑可视化的应用 洋务运动破产根因分析 prometheus 网以云广告文案分析 智能运维根因分析场景 网络消费状况数据可视 根因分析 工具 方法 应用性能管理妙招 便宜的应用性能管理 应用性能管理哪找
全景性能监控/dt>
prometheus 根因分析图做法 根因 跌倒病人的根因分析 数据可视化 地图 网 软件bug根因分析报 安全事故根因分析表 马云谈网商发展前景分 规模大的网络性能监控 电力系统网络攻击面可 网络可视化流程包括哪
OpenTelemetry
k8s promet 运营商网络可视化建设 网络可视化攻击数据源 bp神经网络有可视化 不属于根因分析工具的 根因分析图做法 根因 prometheus prometheus 云网如何故障分析 网络性能监控书籍 前
关注我们